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Abstract

Given a graph H, the Ramsey number R(H) is the smallest n ∈ N such that every
2-edge-colouring of Kn yields a monochromatic copy of H. We write mH to denote the
union of m vertex-disjoint copies of H. These graphs are also known as H-tilings. A
famous result of Burr, Erdős and Spencer states that R(mK3) = 5m for m ≥ 2. On the
other hand, Moon proved that every 2-edge-coloured K3m+2 yields a mK3 where each
copy of K3 is monochromatic, for m ≥ 2. Crucially, in Moon’s result, distinct copies
of K3 might receive different colours.

We investigate the analogous questions where the complete host graph is replaced by
a graph of large minimum degree. We determine the largest size of a monochromatic K3-
tiling one can guarantee in any 2-edge-coloured graph of large minimum degree. We also
determine the (asymptotic) minimum degree threshold for forcing a K3-tiling covering
a prescribed proportion of the vertices in a 2-edge-coloured graph such that every copy
of K3 in the tiling is monochromatic. These results therefore provide dense generalisations
of the theorems of Burr–Erdős–Spencer and Moon.

1 Introduction

Ramsey theory is a central research topic in combinatorics. Ramsey’s original theorem [17]
asserts that for every graph H, there exists an n ∈ N such that every 2-edge-colouring of
the complete graph Kn on n vertices yields a monochromatic copy of H. We write R(H) to
denote the smallest n for which the above holds.

In general, determining R(H) is a very difficult problem and there are relatively few
graphs H for which the exact value of R(H) is known. An interesting class of graphs whose
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Ramsey behaviour is quite well-understood are so-called tilings. For a fixed graph H, an
H-tiling is a collection of vertex-disjoint copies of H. For m ∈ N, we write mH to denote
an H-tiling consisting of m copies of H. The following result of Burr, Erdős and Spencer [5]
determines the exact value of R(mK3).

Theorem 1.1 (Burr, Erdős and Spencer [5]). We have R(mK3) = 5m for every m ≥ 2.

More generally, Burr, Erdős and Spencer [5] proved that, for a fixed graph H without
isolated vertices, there exist constants c and m0 such that R(mH) = (2|H| − α(H))m + c
provided m ≥ m0, where α(H) is the independence number of H. Burr [4], and subsequently
Bucić and Sudakov [3], provided methods for computing c exactly. Bucić and Sudakov [3] also
obtained the current best bounds for m0.

Although not a Ramsey-type question in the classical sense, it is also natural to ask how
large a complete 2-edge-coloured graph needs to be to ensure there exists an H-tiling of a
given size such that every copy of H is monochromatic. Crucially, in this setting, different
copies of H in the tiling are allowed to receive different colours. The following result of
Moon [15] settles the H = K3 case of this problem (and was later generalised by Burr, Erdős
and Spencer [5] to larger cliques).

Theorem 1.2 (Moon [15]). For every integer m ≥ 2, every 2-edge-colouring of K3m+2 yields
a K3-tiling consisting of m monochromatic copies of K3. Furthermore, the term 3m+2 cannot
be replaced by a smaller integer.

Schelp [18] (see also [14]) proposed the study of Ramsey-type questions where the host
graph, rather than being complete, can be any graph satisfying a given minimum degree condi-
tion. Various results have been proven in this direction, see for example [1, 8, 9, 13]. Motivated
by this line of research, in this extended abstract we consider the natural generalisations of the
aforementioned classical Ramsey-type results about tilings to the dense setting. The works of
Burr–Erdős–Spencer and Moon suggest the following two problems.

Problem 1.3. Let H be a fixed graph and n, r, δ ∈ N. Determine the largest m ∈ N such that
any r-edge-coloured n-vertex graph G with minimum degree δ(G) ≥ δ contains a monochro-
matic copy of mH.

Problem 1.4. Let H be a fixed graph and n, r, δ ∈ N. Determine the largest m ∈ N such that
any r-edge-coloured n-vertex graph G with minimum degree δ(G) ≥ δ contains an H-tiling
consisting of m monochromatic copies of H (and distinct copies of H in the tiling might be
coloured differently).

Various special cases of Problems 1.3 and 1.4 have already been considered and resolved.
For example, the r = 1 case of both Problems 1.3 and 1.4 is equivalent to determining the
largest H-tiling one can guarantee in any n-vertex graph G with δ(G) ≥ δ. An H-tiling in a
graph G is perfect if it contains all the vertices of G. The minimum degree threshold to force a
perfect H-tiling in a graph was determined for H = K3 by Corrádi and Hajnal [7], for H = Kℓ

(for any ℓ ∈ N) by Hajnal and Szemerédi [10] and for an arbitrary fixed graph H by Kühn
and Osthus [12]. Komlós [11] determined (asymptotically) the minimum degree threshold that
guarantees the existence of an H-tiling covering a fixed proportion of the vertices of the host
graph, provided the proportion is less than 1, for any fixed graph H. Therefore, the r = 1
case of Problems 1.3 and 1.4 is (asymptotically) fully understood.
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The H = K2 case of both Problems 1.3 and 1.4 has also been resolved. The case H = K2 of
Problem 1.4 is equivalent to determining the largest K2-tiling in a graph with given minimum
degree, and thus it is covered by, for example, the Hajnal–Szemerédi theorem. The case
H = K2 of Problem 1.3 has a more interesting history. Given graphs H1, . . . ,Hr, we write
Rr(H1, . . . ,Hr) to denote the smallest integer n such that any r-edge-colouring of Kn using
colours c1, . . . , cr yields a monochromatic copy of Hi in colour ci, for some i. Generalising a
result of Cockayne and Lorimer [6], Gyárfás and Sárközy [9] determined R3(mK2,mK2, St) for
all t,m ∈ N, where St is the star on t+1 vertices. The connection of this purely Ramsey-type
result to Problem 1.3 is that a red/blue/green edge-coloured Kn which does not contain a
green monochromatic copy of St can be seen as a red/blue edge-coloured n-vertex graph G
with δ(G) ≥ n − t. Therefore, Gyárfás and Sárközy’s result resolves the case H = K2,
r = 2 of Problem 1.3. Omidi, Raeisi and Rahimi [16] computed Rr(mK2, . . . ,mK2, St) for all
r, t,m ∈ N, thus resolving the case H = K2 of Problem 1.3 in full.

2 Main results

In this extended abstract, our main focus is to study Problems 1.3 and 1.4 when H = K3

and r = 2. Observe that the case δ ≤ 4n/5 is uninteresting, as one cannot guarantee a single
monochromatic copy of K3. Indeed, consider a 2-edge-coloured K5 that does not contain a
monochromatic copy of K3 and blow it up to obtain a 2-edge-coloured balanced complete 5-
partite graph G on n vertices. Then δ(G) = ⌊4n/5⌋ and G does not contain a monochromatic
copy of K3. For Problem 1.3, the following theorem provides an exact answer when δ is a bit
larger than 4n/5 or a bit smaller than n− 1.

Theorem 2.1. Let n ∈ N and G be a 2-edge-coloured n-vertex graph. Then G contains a
monochromatic copy of mK3 where m is equal to

(B.1) ⌊(δ(G) + 1)/5⌋ if 65n
66 ≤ δ(G),

(B.2) ⌈(5δ(G)− 4n)/2⌉ if 4n
5 ≤ δ(G) ≤ 5n

6 .

Furthermore, parts (B.1) and (B.2) are best possible, in the sense that the statement of the
theorem does not hold if m is replaced by a larger number.

The analogous case of Problem 1.4 turns out to be much more tractable. The following
theorem provides an (asymptotic) resolution for all values of δ.

Theorem 2.2. Let n ∈ N and G be a 2-edge-coloured n-vertex graph. Then there exists a
K3-tiling in G such that every copy of K3 is monochromatic and the number of copies of K3

in the tiling is at least

(M.1) ⌊(2δ(G)− n)/3⌋ if 7n
8 ≤ δ(G),

(M.2) ⌊(4δ(G)− 3n)/2⌋ − o(n) if 5n
6 ≤ δ(G) ≤ 7n

8 ,

(M.3) 5δ(G)− 4n if 4n
5 ≤ δ(G) ≤ 5n

6 .

Furthermore, parts (M.1) and (M.3) are best possible and part (M.2) is best possible up to
the o(n) term.
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Note that Theorems 2.1 and 2.2 can be seen as dense generalisations of the results of Burr–
Erdős–Spencer and Moon. Indeed, cases (B.1) and (M.1) imply Theorems 1.1 and Theorem 1.2
respectively.

The following constructions show the sharpness of case (B.1) of Theorem 2.1 and all cases
of Theorem 2.2. For brevity, we omit the construction for case (B.2) of Theorem 2.1.

Construction for Theorem 2.1 (B.1). Let n, δ ∈ N with 5 ≤ δ ≤ n − 1. Let G be the
n-vertex graph where all edges are present except for an independent set S of size n− δ ≥ 1.
In particular, δ(G) = δ. Pick a partition V (G) \ S = R∪̇B such that |R| ≤ 3⌊(δ + 1)/5⌋ + 2
and |B| ≤ 2⌊(δ+1)/5⌋+1. Assign colour red to all edges that either lie in R or are between S
and B. Assign colour blue to all edges that either lie in B or are between R and S ∪B.

Observe that there is no monochromatic K3 intersecting S, i.e., every monochromatic copy
of K3 must lie in R∪B. In particular, a red copy of K3 must lie completely in R, while a blue
copy of K3 must have at least two vertices in B. Therefore, if there is a monochromatic mK3

in G then m ≤ max {⌊|R|/3⌋ , ⌊|B|/2⌋} ≤
⌊
δ+1
5

⌋
, as required.

Construction for Theorem 2.2. Let n, δ ∈ N such that 4n/5 ≤ δ ≤ n − 1. Let G be the
following n-vertex graph. We have a partition V (G) = V0∪̇V1∪̇ · · · ∪̇V5 where |Vi| = n− δ ≥ 1
for every i ≥ 1 and |V0| = 5δ− 4n ≥ 0. The sets V1, . . . , V5 are independent; all other pairs of
vertices form an edge. It is easy to check that δ(G) = δ. Next, assign colours red and blue to
the edges of G as follows. The subgraph G[V0 ∪ V1, V2, V3, V4, V5] is a blow-up of a red/blue
edge-coloured K5 that does not contain a monochromatic K3. Without loss of generality, we
may assume that the edges between V0 ∪ V1 and V2 ∪ V3 are blue while the edges between V2

and V3 are red. Finally, all edges lying in V0 ∪ V1 are red.
By construction, the subgraph G[V0 ∪V1, V2, V3, V4, V5] does not contain a monochromatic

copy of K3. It follows that every monochromatic copy of K3 contains an edge lying in V0∪V1,
and thus it must be red. In particular, every monochromatic copy of K3 (i) has at least one
vertex in V0 (since V1 is independent) and (ii) at least two vertices in V0∪V1. Furthermore, we
have that (iii) no red monochromatic copy of K3 intersects V2∪V3. If there are m vertex-disjoint
monochromatic copies of K3 in G, properties (i), (ii) and (iii) imply that m ≤ min{|V0|, |V0 ∪
V1|/2, (n− |V2 ∪ V3|)/3} = min{5δ − 4n, (4δ − 3n)/2, (2δ − n)/3}.

3 Proof sketch of Theorems 2.1 and 2.2

For the proof of Theorem 2.2, we employ a common strategy for all cases (M.1)–(M.3): we first
find many vertex-disjoint (blow-ups of) cliques in the host graph by combining the Hajnal–
Szemerédi theorem [10] with the regularity method,1 and then find monochromatic vertex-
disjoint triangles within each such subgraph. This yields a large K3-tiling where every copy
of K3 is monochromatic. Note also that case (B.2) of Theorem 2.1 follows immediately from
case (M.3) of Theorem 2.2 and the pigeonhole principle. We do not provide further details on
these arguments, and instead focus on the more subtle proof of case (B.1) of Theorem 2.1.

A bowtie consists of two monochromatic copies of K3 of different colours which share
exactly one vertex. The notion of a bowtie in this context was introduced by Burr, Erdős and
Spencer [5], and played a crucial role in their proof of Theorem 1.1. The following new result
is a key ingredient of the proof of Theorem 2.1 (B.1).

1Formally, the latter is only used in case (M2).
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Lemma 3.1. Suppose a 2-edge-coloured K7 contains a bowtie. Then there exists another
bowtie on a different vertex set.

The proof of case (B.1) of Theorem 2.1 follows a vertex-switching type argument. Given an
n-vertex graph G with δ(G) ≥ 65n

66 , we start by selecting a maximum collection B of vertex-
disjoint copies of K5, each containing a bowtie. Subject to this, we let T be a maximum
collection of monochromatic triangles, all of the same colour, which are vertex-disjoint from
each other as well as from the elements of B. For brevity, we consider the case T ̸= ∅.
Observe that G contains a monochromatic copy of (|B|+ |T |)K3, and so we may assume for a
contradiction that |B|+ |T | < ⌊(δ(G) + 1)/5⌋. It follows that strictly less than δ(G) vertices
lie in B ∪ T and thus there exists an edge e which is not incident to any element in B ∪ T .

Let T ∈ T and set X := T . By using the fact that δ(G) ≥ 65n
66 , one can argue that there

is some element B in B such that both B ∪ {e} and B ∪ X span two complete subgraphs.
In particular, B ∪ {e} spans a copy of K7 and so by Lemma 3.1 there exists a bowtie B′

and a vertex x ∈ V (B) such that V (B′) ⊆ V (B ∪ {e}) and x /∈ V (B′). We then modify the
collection B by removing B and adding B′ in its place. Crucially, after this modification, the
vertex x does not belong to B anymore and it is adjacent to all vertices of X (since B ∪ X
spans a clique). We then add x to X. By iterating this procedure, we are able to increase the
size of X while ensuring it still spans a clique. Note that the collection T is not affected at
all in this process.

Once X reaches a sufficiently large size, by Moon’s result (Theorem 1.2) it must contain
two disjoint monochromatic triangles. If these have the same colour as the triangles in T , we
can add them to T in place of T , thus contradicting the maximality of T . Otherwise, one can
argue that X contains a bowtie, contradicting the maximality of B.

Data availability statement. A full paper containing the proofs of our results can be found
on arXiv [2].
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